Journal Article FZJ-2019-04205

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Substrate-rigidity dependent migration of an idealized twitching bacterium

 ;  ;  ;  ;  ;  ;

2019
Royal Soc. of Chemistry London

Soft matter 15(30), 6224 - 6236 () [10.1039/C9SM00541B]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Mechanical properties of the extracellular matrix are important determinants of cellular migration in diverse processes, such as immune response, wound healing, and cancer metastasis. Moreover, recent studies indicate that even bacterial surface colonization can depend on the mechanics of the substrate. Here, we focus on physical mechanisms that can give rise to substrate-rigidity dependent migration. We study a “twitcher”, a cell driven by extension–retraction cycles, to idealize bacteria and perhaps eukaryotic cells that employ a slip-stick mode of motion. The twitcher is asymmetric and always pulls itself forward at its front. Analytical calculations show that the migration speed of a twitcher depends non-linearly on substrate rigidity. For soft substrates, deformations do not lead to build-up of significant force and the migration speed is therefore determined by stochastic adhesion unbinding. For rigid substrates, forced adhesion rupture determines the migration speed. Depending on the force-sensitivity of front and rear adhesions, forced bond rupture implies an increase or a decrease of the migration speed. A requirement for the occurrence of rigidity-dependent stick-slip migration is a “sticky” substrate, with binding rates being an order of magnitude larger than unbinding rates in absence of force. Computer simulations show that small stall forces of the driving machinery lead to a reduced movement on high rigidities, regardless of force-sensitivities of bonds. The simulations also confirm the occurrence of rigidity-dependent migration speed in a generic model for slip-stick migration of cells on a sticky substrate.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (ICS-2)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)

Appears in the scientific report 2019
Database coverage:
Medline ; OpenAccess ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-5
Institutssammlungen > IAS > IAS-2
Workflowsammlungen > Öffentliche Einträge
ICS > ICS-2
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-08-13, letzte Änderung am 2024-06-10