Journal Article FZJ-2019-06036

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles

 ;  ;  ;  ;  ;  ;

2019
Wiley-VCH Weinheim

Advanced energy materials 9(15), 1803902 - () [10.1002/aenm.201803902]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: A multicompositional particulate Li[Ni0.9Co0.05Mn0.05]O2 cathode in which Li[Ni0.94Co0.038Mn0.022]O2 at the particle center is encapsulated by a 1.5 µm thick concentration gradient (CG) shell with the outermost surface composition Li[Ni0.841Co0.077Mn0.082]O2 is synthesized using a differential coprecipitation process. The microscale compositional partitioning at the particle level combined with the radial texturing of the refined primary particles in the CG shell layer protracts the detrimental H2 → H3 phase transition, causing sharp changes in the unit cell dimensions. This protraction, confirmed by in situ X‐ray diffraction and transmission electron microscopy, allows effective dissipation of the internal strain generated upon the H2 → H3 phase transition, markedly improving cycling performance and thermochemical stability as compared to those of the conventional single‐composition Li[Ni0.9Co0.05Mn0.05]O2 cathodes. The compositionally partitioned cathode delivers a discharge capacity of 229 mAh g−1 and exhibits capacity retention of 88% after 1000 cycles in a pouch‐type full cell (compared to 68% for the conventional cathode). Thus, the proposed cathode material provides an opportunity for the rational design and development of a wide range of multifunctional cathodes, especially for Ni‐rich Li[NixCoyMn1‐x‐y]O2 cathodes, by compositionally partitioning the cathode particles and thus optimizing the microstructural response to the internal strain produced in the deeply charged state.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 20 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2019-12-02, last modified 2024-07-11


Published on 2019-02-21. Available in OpenAccess from 2020-02-21.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)