Journal Article FZJ-2020-00712

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Asymmetric LSCF Membranes Utilizing Commercial Powders

 ;  ;  ;

2020
MDPI Basel

Materials 13(3), 614 () [10.3390/ma13030614] special issue: "Membrane Materials for Gas Separation"

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Powders of constant morphology and quality are indispensable for reproducible ceramic manufacturing. In this study, commercially available powders were characterized regarding their microstructural properties and screened for a reproducible membrane manufacturing process, which was done by sequential tape casting. Basing on this, the slurry composition and ratio of ingredients were systematically varied in order to obtain flat, crack-free green tapes suitable for upscaling of the manufacturing process. Debinding and sintering parameters were adjusted to obtain defect-free membranes with diminished bending. The crucial parameters are the heating ramp, sintering temperature, and dwell time. The microstructure of the asymmetric membranes was investigated, leading to a support porosity of approximately 35% and a membrane layer thickness of around 20 µm. Microstructure and oxygen flux are comparable to asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) membranes manufactured from custom-made powder, showing an oxygen flux of > 1 mLcm−2min at 900 °C in air/Ar gradient.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. GREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524) (608524)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2020-01-30, last modified 2024-07-11