Journal Article FZJ-2020-03874

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Control of stoichiometry and morphology in polycrystalline V2O3 thin films using oxygen buffers

 ;  ;  ;  ;  ;  ;  ;

2020
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of materials science 55(30), 14717 - 14727 () [10.1007/s10853-020-05028-0]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this work, we investigate the influence of low temperature reduction conditions (873 K) by different oxygen buffers on the off-stoichiometry of polycrystalline V2O3 thin films. Vanadium oxide thin films (thickness 300 nm and 100 nm) have been grown by reactive sputtering and have been annealed in a buffered atmosphere subsequently. Buffer couples were chosen throughout the stability range of V2−yO3 (y ≤ 0.03) by the use of different oxygen buffer combinations, namely Ni/NiO, Fe/Fe3O4, Cr/Cr2O3 and Mn/MnO. Thin films have been characterized by scanning electron microscopy, X-ray diffractometry and low temperature electrical transport measurements. Upon decreasing the oxygen partial pressure, the mean grain size of V2O3 decreases systematically from 45 ± 20 nm with a high porosity to 27 ± 10 nm without porosity. The most favourable reduction conditions have been identified for Fe- and Cr-based couples. Moreover, all thin films reduced by the four buffer couples exhibit high insulator-to-metal transition temperatures (110–155 K) close to the value of ideally stoichiometric V2−yO3 (y < 0.005) (155 K) as well as large changes in resistance at the transition (three to five orders of magnitude). This oxygen buffer method hence provides a valuable synthesis method of highly stoichiometric polycrystalline V2O3 thin films with technological relevance

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-10-07, last modified 2021-01-30


Published on 2020-07-17. Available in OpenAccess from 2021-07-17.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)