Journal Article FZJ-2021-04384

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Design of Materials Configuration for Optimizing Redox‐Based Resistive Switching Memories

 ;

2022
Wiley-VCH Weinheim

Advanced materials 34(3), 2105022 () [10.1002/adma.202105022]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Redox-based resistive random access memories (ReRAMs) are based on electrochemical processes of oxidation and reduction within the devices. The selection of materials and material combinations strongly influence the related nanoscale processes, playing a crucial role in resistive switching properties and functionalities. To date, however, comprehensive studies on device design accounting for a combination of factors such as electrodes, electrolytes, and capping layer materials related to their thicknesses and interactions are scarce. In this work, the impact of materials’ configuration on interfacial redox reactions in HfO2-based electrochemical metallization memory (ECM) and valence-change memory (VCM) systems is reported. The redox processes are studied by cyclic voltammetry, and the corresponding resistive switching characteristics are investigated. In ECM cells, the overall cell resistance depends on the electrocatalytic activity of the counter electrode. Nonetheless, the capping layer material further influences the cell resistance and the SET and RESET voltages. In VCM systems, the influence of the electrode material configuration is also pronounced, and is capable of modulating the active resistive switching interface. For both types of memory cells, the switching behavior changes significantly with variation of the oxide thickness. The results present important materials selection criteria for rationale design of ReRAM cells for various memristive applications.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 30 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-FIT
Institutssammlungen > PGI > PGI-7
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-11-22, letzte Änderung am 2023-03-03


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)