Journal Article FZJ-2022-05598

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nano-LED driven phase change evolution of layered chalcogenides for Raman spectroscopy investigations

 ;  ;  ;  ;  ;  ;  ;  ;

2022
Elsevier Amsterdam

FlatChem 36, 100447 - () [10.1016/j.flatc.2022.100447]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We present a device driving testing platform based on vertically integrated nano light emitting diodes (nano- LEDs). The nano-LEDs with a peak wavelength emission centered at ~ 445 nm were arranged in arrays and conditioned using a laser-micro-annealing process to individually tune their intensity. They were coupled with freestanding monocrystalline Ge1Sb2Te4 nano-membranes with three different thicknesses (~40, ~ 60 and ~ 90 nm) with the aim of initializing ultrafast switching processes and of observing phase changed states simulta- neously by Raman spectroscopy. Raman spectroscopy studies reveal that the optical pulses emitted from the nano-LEDs induce substantial, local changes in the nano-membranes’ states of the Ge1Sb2Te4 layered material. Beside the crystalline state in non-exposed areas (as-grown material), amorphous and different intermediate states were identified in exposed areas as island-like structures with diameters ranging from ~ 300 nm up to ~ 1.5 µm. The latter confirms the nano-LEDs’ emission role in both near- and far-field regimes, depending on the distance between nano-LED and nano-membrane, for driving i.e. inducing the phase change process. The results presented demonstrate the suitability and potential of the vertically integrated nano-LEDs as the key components for a testing platform/for electro-optical convertors driving phase change processes in optically active media. They could also play an important role in the development of future, e.g., non-volatile data storage as well as in optical and neuromorphic computing architectures based on transmistor devices.

Classification:

Contributing Institute(s):
  1. Materialwissenschaft u. Werkstofftechnik (ER-C-2)
  2. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) (POF4-535)

Appears in the scientific report 2022
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-2
Institute Collections > PGI > PGI-6
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-12-07, last modified 2025-03-21


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)