Journal Article FZJ-2025-03714

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A multi-physics model for dislocation driven spontaneous grain nucleation and microstructure evolution in polycrystals

 ;  ;

2026
Elsevier Science Amsterdam [u.a.]

Journal of the mechanics and physics of solids 206(Part A), 106325 - () [10.1016/j.jmps.2025.106325]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: The granular microstructure of metals evolves significantly during thermomechanical processing through viscoplastic deformation and recrystallization. Microstructural features such as grain boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions critically influence grain nucleation and growth during recrystallization. Traditionally, modeling this coupled evolution involves separate, specialized frameworks for mechanical deformation and microstructural kinetics, typically used in a staggered manner. Nucleation is often introduced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation density, stress, or strain. This is a consequence of the inherent limitations of the staggered approach, where newly formed grain boundaries or grains have to be incorporated with additional processing.In this work, we propose a unified, thermodynamically consistent field theory that enables spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, allowing the simulation of key microstructural defects, as well as curvature- and stored energy-driven grain boundary migration. The unified approach enables seamless identification of grain boundaries that emerge from deformation and nucleation. Nucleation is activated through a coupling function that links dislocation-related free energy contributions to the phase field. Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simulations, where mechanisms such as strain-induced boundary migration, subgrain growth, and coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel addition to the capabilities of phase field models for recrystallization simulation.

Classification:

Contributing Institute(s):
  1. Materials Data Science and Informatics (IAS-9)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-9
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-09-15, last modified 2025-09-15


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)